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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1923

STUDY OF A GUIDANCE SCHEME USING
APPROXIMATE SOLUTIONS OF TRAJECTORY EQUATIONS TO CONTROL
THE AFRODYNAMIC SKIP FLIGHT OF A REENTRY VEHICLE

By Robert S. Dunning
SUMMARY

Approximate closed-form solutions to the reentry equations are developed by
assuming that the difference between the centrifugal and gravitational accelera-
tions is negligible. The approximate solutions are valid in the exit-velocity
range between approximately 23,000 and 26,000 feet per second. A numerical com-
parison is made between the approximate and exact solutions for six typical tra-
jectories. The results indicate good agreement with complete convergence occur-
ring at the skipout condition within a reasonable flight corridor. Approximate
explicit equations governing coasting flight after a skip maneuver are also devel-
oped and compared with the exact solutions. A guidance scheme employing these
equations is described and results are presented from a two-dimensional digital-
computer simulation of this scheme. Erphasis is placed on simplicity and speed
of computation. The results indicate satisfactory control to exit from the atmos-
phere over ranges from approximately 70O to 200° about the center of the earth.

INTRODUCTION

Although direct reentry into the atmosphere is planned for vehicles returning
from space missions, a "skip" type of reentry may be useful as a means of
extending range or as an emergency procedure if suitable guidance can be provided.
In a skip maneuver the vehicle enters the atmosphere at a low flight-path angle
and then, through the control of aerodynamic and centrifugal forces, is made to
skip out. After a period c¢f coasting flight, the vehicle reenters. Such a maneu-
ver has the advantages that the heat input to the vehicle may be reduced in rela-
tion to the range covered and that such a maneuver may be more compatible o the
heat-protection system of the vehicle.

The total angular range covered is composed of three portions: a portion
within the atmosphere from reentry to exit, a coasting portion outside of the
atmosphere, and a portion from final reentry to landing. Of the three parts, the
first and third will in most cases contribute less to the total range than the
coast portion; but the conditions that exist at the exlt from the first part
essentially determine the range that one may reach. The first problem in the use



of a skip maneuver is, then, to select the total range required and to establish
exit conditions from the atmosphere which will insure that this range is achileved.
That is, from among the numerous possible velocity—flight-path-angle combinations
one must select a single combination which will achieve the desired range. At the
same time, this combination must be such that it is not only physically possible
for the vehicle to be guided to it during the atmospheric portion of the maneuver,
but this combination must also allow for the limitation that the speed cannot be
materially controlled by aerodynamic drag once the initial reentry has been ini-
tiated. Moreover, once a proper combination of exit veloclty and flight-path
angle has been selected, it is necessary to guide the vehicle to achieve these
conditions very accurately, inasmuch as relatively small errors at exit can have

a pronounced effect on range.

In addition to the foregoing requirements, it is also desirable that any
practical skip-control guidance system be simple and be capable of controlling the
vehicle rapidly and accurately in response to present-time information about
velocity and flight-path angle.

In this report some preliminary results are presented of an analytic study
which has been made with a view of providing just such control. It must be empha-
sized that this is a fine-adjustment scheme to be utilized within an already rea-
sonable flight corridor. The guidance equations for the first atmospheric portion
are developed, then the coasting portion is considered in order to determine
desirable exit conditions; and, finally, some preliminary results of a simulation
combining the two portions are discussed. No attempt is made to cover the second
entry portion of the maneuver because this is a normal reentry and hence is
already adequately covered in other literature. (See refs. 1 and 2.) For the
sake of simplicity, the whole study has been kept two dimensionsl.

CONSTANTS AND SYMBOLS

Coordinates employed in describing the motions of the reentry vehicle are
given in figure 1. Any consistent set of units may be used. In this report it
is assumed that:

ge = 32.17 feet per second per second

re = 3,960 international statute miles

Voir = 25,750 feet per second

B = 1/24,000 per foot
Pe = 0.003 slug per cubic foot

1 international statute mile = 5,280 feet = 1.60934Lk kilometers
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Figure 1.- Coordinates employed in describing motions of reentry vehicle.



constants defined by equations (23), (24), and (25)

constants defined by equations (40), (41), and (42)

K
constant defined as cos 1y - 7% Y

. Ko
constant defined as —

drag coefficient
1ift coefficient

drag force
gravitational acceleration

earth gravitational constant

radial height above surface of earth

maximum (apogee) altitude attained by vehicle

minimum (perigee) altitude attained by vehicle

C S

constant defined as ~2oC-
2m
constant defined as -

1ift force
lift-drag ratio
mass of vehicle

dynamic pressure

radial distance of entry vehicle from center of earth,

radius of earth

exit, or breakout, distance from center of earth

distance traveled




e

S]]

b

e(V)

P
Subscripts:
a

b

surface area of entry vehicle
tinme
velocity

circular satellite wvelocity

exit, or breakcut, velocity
weight of entry vehicle

horizontal velccity component at exit, or breakout, W, cos 1y
function of a, b, and y defined by equation (15)

function of altitude, e~Ph

function of y defined in equation (15b)

vertical velocity component at exit, Vi sin o

angle of attack

decay constant of atmosphere
function defined by equations (20)
flight-path angle

exit, or breakout, flight-path angle

; g (V2
function of velocity, —=|— -~ cos v
y2\8T

range measured in angle about center of earth during skip portion of
maneuver

range measured in angle about center of earth during coast portion of
maneuver

density of atmosphere

apogee or highest trajectory point

breakout, or exit, conditions



c approximate solutions
e conditions existing at surface of earth
max maximum
Bars over symbols denote speclal conditions indicated in text.

Dots over symbols dencte derivatives with respect to time.

ATMOSPHERIC REENTRY PORTION

In order to provide the requisite degree of accuracy and, at the same time,
to maintain as simple an operational procedure as possible, the equations of
motion will be solved in a simple two-dimensional form. This approach is attrac-
tive both from the computational standpoint because solutions based on present
conditions must be provided quickly, and from the operational standpoint because
the equations can then be incorporated into a small memory unit attached to a
general -purpose computer and need not be read into the computer at all unless
actually needed.

Inasmuch as the coast phase will be entirely determined by the velocity and
flight-path angle which exist when the vehicle exits from the atmosphere, the pri-
mary purpose in solving these equations is to provide a means of guiding the vehi-
cle to a certain previously supplied exit velocity and flight-path angle. A
method of supplying exit velocity and flight-path angle will be considered later
in this report as a part of the coasting phase. However, as far as the atmos-
pheric reentry portion is concerned (i.e., that portion which constitutes the
first part of this report) the breakout or exit conditions will be taken as exter-
nally supplied.

Equations and Assumptilons

The baslic nonlinear equations of motion for atmospheric reentry are:

mﬁ = -D - Wsin v
. Ve
mvVy = L + Wl— - cos Y
&r > (1)
ﬁ =V sin v
n5 =VecosrT
P

For simplificatlon of these equations, the following substitutions and assumptions
are made:



-ph

P = Pe€
where Pe and P are constants;
D. Kle’BhV2
m
CppeS
where K, = —gﬁg— = Constant;
m
CrpPeS
where Ko = gme = Constant; and

2
é%(%; - )cos v =¢€e(V) =0

From the last assumption it is seen that whenever the velocity is equal to satel-

lite velocity, that is, V = {gr, or when y = 90°, the term e(V) is identically
zero. Hence, these closed-form solutions to the reentry equations are developed
by assuming that the difference between the centrifugal and gravitational acceler-
ations is negligible. The term (V) will be carried, however, until this
assumption can be justified.

For simplicity, the following change of the variable h +to the variable vy
is made. Let

Yy = e-Bh (2)

so that

= -ph (2a)

e

With the foregoing assumptions and the change of variables given by equations (2)
and (2a), the equations of motion (1) become:

6 = —KlyV2 - g sin r
T = KoyV + Ve(V)
] [ (3)
Yy = -ByV sin v
ré =V cos 1
Py



Eliminate the independent variable, time, in favor of the variable y. Equa-
tions (3) then become:

dy y Bsiny Byv
ar _y .. _Fo eV (5)
y oy Bsiny By siny
and
a (52 =._ctny (6)
dy vy Bry

These, then, are the equations to be integrated for V, 1y, and © as functions

of the variable y, which in turn is expressible in terms of the altitude h. It
should be noted that no assumption has been made as to the magnitude of y; that

is, no assumption of a small flight-path angle has been made.

Variation of Flight-Path Angle 7y
In order that the flight-path angle Y be evaluated, the following steps are

taken. With the use of the subscript b to denote the exit or breakout condi-
tion, the integral of equation (5) becomes:

L5 K o b (
f sin vy dr = -2 f dy - L f e(V)dy

If, during the interval of evaluation, e(V) has a very weak variation with Yy,
then

Tp K b Yb
-COS T =-7§ yl - Eﬁgl in y
Y Y y
or
K
cos v = cos 1y + T%(y - yb) + E‘X) in 5% (7

In terms of h, equation (7) becomes:

8



K - -Bh
- 2(o-Bh i)
cos Y = cos T + 7?(? - e ) - e(V)(h - hb) (8)
Since, for the appropriate values of ph and Bhy,
1( -Bh ’Bhb) ~
"B-(e - € —(h. - b:b)

and K2 >> ¢(V), it can be seen that the third term on the right-hand side of
equation (8) is negligible compared to the second term on the right-hand side and

is henceforth neglected.
Variation of the Velocity V

For the purpose of evaluating velocity V as a function of ¥y, equation (7N
is written in the form

cos ¥ = a + by (9)
where
a = cos Y - %% Yy (10)
and
b = KB_2 (11)
Equation (9) may be rewritten:
sin v = Jl - (a + by)? (12)
or
sin v = J(l - ag) - 2aby - b2y° (12a)

Equation (4) then becomes



and the integral of this equation with the proper limits yields

Vb ! x
f d_v=;f 1, 8 \ay (13)
v V B sin v ng

Y

Again, it may be seen from numerical calculations that the second term on the
right-hand side of equation (13) will contribute very little to the solution

because

>> 3% by several orders of magnitude. Furthermore, the small
sin v v

variations in g and V with y throughout the interval of integration will
have even less influence on the solution and will therefore be negiected.
Treating g and V 1in the second term of the right-hand side of equation (4) as
constant average values (denoted by g and V) and replacing sin y with the
identity of equation (12a) alters equation (13) to

kK, b z
]_nl.:-._].'. f d_z+_%._]_nz_ (lh.)
Vb B y JY Bve Yb

where
T =(1-82) - 2aby - b3y2 (15)

By the use of integral tables and several trigometric identities, the integral of
the first term on the right-hand side of equation (14) may be put into the form

J

From equations (11) and (9),
Jr dy __ B _l(-cos T)
-2 = 3 — sin —
— K +
T % .
._@_ £ - cos—l(m>
Ks |2 +]

= i sin"l(_ a_-'-_;bl)
1b

=nle

Il
+

10



Depending on the choice of signs for the second term of the right-hand side of the

preceding equation, the integral of 91 may become

T

JF %% = = %%(g - Y) (16a)
or
f d_g =+ 1%(% + y) (16b)

In either case, the same answer results when the limits of equation (14) are
applied, and when the values of equations (16) are substituted into equation (14),
namely,

Vi Ky g y
ln — = ¥ —(y - ) + — In <
Clearing logarlthms and replacing y with e-PB and Kl/K2 with (Ll/D) yields
the following explicit expression for V:
+D g
a Y"Yb ~ =5 h"h'b
vV = Vbe[L( ) Ve( ) (17)

Again it should be noted that equation (17) is valid only in an interval in
which the second term of the exponent is always small compared to the first term.
This second term should be considered an approximate second-order correction to
the first term by virtue of its derivation. It also follows that inasmuch as Vy,

must always be less than V (because of atmospheric drag) the first term of the
exponent must always be a positive quantity. Finally, because a value of g Ve
must be assigned in equation (14), it should suffice to use g, and Vy if one

is solving for V and to use the present-state values of g and V 1if one is
solving for V.

Variation of Range ®

Integration of equation (6) for range yields the following equations:

Y
/pgb a0 = 1 b ctn Y dy
v Yy

11
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and

At this point, three cases must be considered.

First, if a° = 1, then

—\Y T
N1 S
aby Yo Br o +] .

K Y Yo

& -8 =t L fsin y 81D 7B\ | 1
T

(eBh sin v - eBhb sin Tb> + EL(Y - Yb) (18a)
Kor B

In most practical cases a? is very nearly unity, therefore equation (18a) will
usually suffice.

However, the following possibilities are included for the sake
of completeness.

Second, if a“ < 1, then

- y
& -0 =1 2 -lnﬁ+l-a2- eb i_l'(Y-T)
BrJl—ag y Jl-ag ¥ Br b
b



a sin vy + V1 - a? ab
~-1n 7 -

BrJl - a® 1 - a2
sin 1y, + Jl - a° ab

+ 1n - + —(T - Yb)

Yo YA pr

o - © =

2 2
1 -a“ - aby, + V1 - a% sin 1y 1
B, - © =% a 1n b L)t ——(Y - Tp)

.2 % y pr
Bryl - a’ 1-a° - aby + V1 - a® sin Y b

ARG 1
8, -6 =% 2 1n ( b) - B(h - hb) + E?(r - Yb) (18b)
arfl - a2 z(y)
where z(y) =1 - a - aby + V1 - a2 sin 7.
And third, if a2 > 1, then
y
2
1 , -1({-8by + 1 - a 1
-8 =+ 2 = _|sin + = (v -
% Br Va2 -1 ( by ) Br(T Yb)
Yo
2
. 1l - - ab
6y -8 =*% —2 sin'l(l - &% - aby> - sin-l - o)+ ;L(Y - Yb>
priad - 1 toy by, pr

- Bll - a cos 71
22 lyp1|PU o 2] ERRRRL — o)\l (1 - 7
Koy Koy, pr

(18c)

In a more compact form, equations (18a), (18b), and (18c) may be expressed as

13



& -0 = é;{%(r,h) + (Y - rbi] (19)

where the negative sign on the term in brackets is the proper choice in all cases,
and where, for the first case when al = 1,

I'(y,h) = * Eﬁ_(eﬁhsin Y - eBhbsin Yb) (20a)
2

for the second case when a2 < 1,

1-a° - abe—Bhb + Vl - a2 sin Ty

I(y,h) = * a B(hb - h) + 1n (20b)
1 - a? 1 - a2 - abe~Ph 4 Vl - a2 sin Y
and, finally, for a2 > 1,
Bh Bhy,
r(y,h) =+ —2&__ Jsin~t E‘—3-——(1 - acos y)| - sint EE———(l - a cos T )
2 Ko Ko b
a“ -1
(20c)

In equations (20b) and (20c), the negative sign in the term on the right is proper
for all cases run in positive time, and the positive sign is proper for cases run
in negative time.

Numerical Examples

Using the exact equations of motion given by equations (1), a set of six
trajectories were run on a digital computer. This computation was done in order
to obtain exact trajectories with which the approximate equations could be com-
pared. A summary of the trajectory characteristics is shown in table I. The
breakout conditions for these cases were taken from an actual simulation which
will be discussed later in the report. These trajectories were run in negative
time from the final condition and thus represent the last few seconds Just before
skipout.

The computational procedure used in solving the approximate equations is as
follows:

(1) For each of the six cases, the breakout conditions Vp» Ty, and hb

are specified. The altitude is supplied at all times from the exact solutions;
thus, the altitude becomes the independent variable for these particular test
cases.

1k



TABLE T.- CHARACTERISTICS OF THE SIX TEST TRAJECTORIES FOR FIRST ATMOSPHERIC PORTION

Surface |Lift- For exact trajectory - | g . . pout  |Breakout |Breakout
Welght,| area, |drag flight-path|velocity,|altitude
- 3 3 . . . . 3 )
Trajectory Yﬁ s, ratio, In;tlal In%tlal In;tial angle, Ty, Vi by,
sa ft | LD aly |e/bec | £t deg ft/deg £t
I 7,000 | 60 0.5 5.5 |35,000 {300,000 2.620 24,200 | 300,000
II 2,942 2k, 850
11T 3,130 24,950
Iv 3,245 25,290
v 3,350 25,290
VI 3,420 25,600

(2) Equation (9) is solved to give the corresponding approximate computed
values of 7

Yo = cos’l(a + be'Bh)

(3) The values of 7y from step (2) are used, along with the corresponding
values of h from which they were obtained, in the solution of equation (17) for
the approximate values of V.

D g
[L(YC_Yb) i V_z(h'hbi]
VC = Vbe b
(4) step (2) also allows the computation of @®. By equation (19)

% = geP(rer Tor B m) - (7o - )]

where, in the particular test cases which were studled, 6 is arbitrarily set
at zero.

The results of numerical calculations are shown in figures 2, 3, 4, and 5.
Figure 2 shows some general features of the six test trajectories. The test
results for flight-path angle are presented in figure 3, the results for velocity
are presented in figure 4, and the results for range are presented in figure 5.
In these three figures altitude is the independent variable.

Based on the numerical calculations which are shown in figures 3, 4, and 5,
the following conclusions are drawn.

First, with the possible exception of flight-path angle, the results indicate
good agreement between the exact numerical solutions of the equations of motion
and the approximate analytical solutions. The dependent varlable in a guidance

15



scheme would be the lift-drag ratio of
the vehicle. This ratio is, of course,
governed by equation (17) in which
flight-path angle may be supplied as a
measured quantity if necessary.

Second, by specifying a desired
set of conditions at breskout, one can
obtain complete convergence of the
approximate and exact solutions. As a
consequence, these equations should be
especially sultable for guiding a vehi-
cle during the final critical stages of
the skipout maneuver.

Guldance Implications

Thus far, it has been shown that
the equations which have been developed
will actually describe the motions of a
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Figure 3.- Comparison of flight-path angles
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solutions to equations of motion for
final 30 seconds before breakout.

16

Height, h, ft

Velocity, V, ft/sec

32 —x 10"

281

20

Finai fllght-
yath argle,
deg

o= 1 ot

Trajectury

)

22 L
-32

Figure 2.- Altitude plotted against time

for six test trajectories during final
30 seconds before breakout.

Exact
— — — — Approximete

2%5}
24, 1

25,000—
24, A I . I L ! " | L Loy P
24,100
IS ANV N TS UNUGUN FUSY SRS PSSR NS S S SR RS S|
25,500~
_ = :r—\&: e

- = —
25 L {0 1 L L 1 ' i L | I
25,500~
25,21 L I W RO L 1 L L S F P |
25, 800—
25, PR P L R { s 1 i | ) i i ]

-32 28 -2b -20 =16 -12 -8 b ]

Time, t, sec

Figure 4.- Comparison of velocities as

obtained from exact and approximate solu-
tions to equations of motion for final
30 seconds before breakout.



Range, <, deg

T —=
t

- Exact

(D I RPN E S N S S

_3{__.__3__‘_1__;_17,4 S T S S R S S W

_BLA__L._L,. I D S E GO O SHS IO SIS B S
B 2B 24 -20 -l -1z - 4 b

Time, t, sec

Figure S5.- Comparison of angular distance
traveled about center of earth during
final 30 seconds before breakout for
the slx test trajectories.

space vehicle within the flight regime
under consideration. Given the valid-
ity of the equations, however, it is

a relatively simple matter to apply
them in such a manner as to control a
vehicle to achieve desired exit condi-
tions. It is to be assumed that the
reentry vehicle will be equipped with
an inertial guidance system or with
equivalent hardware. Such a system,
if alined just prior to reentry, would
be able to supply information such as
present altitude, velocity, and pos-
sibly flight-path angle. If informa-
tion were available concerning these
same parameters at breakout, the
dependent variable in equation (17) is
the lift-drag ratio of the vehicle.
Consequently, adjustments of the real
1ift-drag ratio in accordance with
this equation will cause convergence
to the desired breakout condition.

The problem which remains, then, 1s

to determine the correct breakout con-
ditions, a problem which is best solved
from orbital or ballistic considera-
tions before entry. It is, of course,
implicit in this assumption that the
range to be attempted be known in
advance.

COAST PHASE

A given angular range in the coast portion of a skip maneuver can theoreti-
cally be obtained with an infinite number of combinations of exit velocity and
flight-path angle. One manner of obtaining uniqueness is to specify a maximum,
or apogee, altitude after the skip along with the desired angular range. In such
a case, however, these variables must lie within the relatively small range of
angles and velocities that can be achieved in the reentry without exceeding either
the deceleration limit or the angle-of-attack limit of the vehicle. There exists
a requirement, therefore, that the apogee altitude be judiciously chosen in order
to insure that the unique exit conditions will fall within the range of values
which can actually be realized. The problem then becomes one of computing a cor-
responding exit velocity and flight-path angle once a desired range and skip alti-
tude are decided upon.

Explicit equations already exist which may be used to speclfy range for a

given exit, flight-path angle, and velocity; explicit equations also exist which
may be used to specify apogee altitude for a glven exit, flight-path angle, and

17



velocity. However, there are no explicit solutions for the reverse of this proc-
ess, namely, velocity or flight-path angle in terms of range and apogee attitude.
This is due to the transcendental nature of some of the trigonometric terms
involved. In using the independent variables of range and apogee altitude to con-
trol skip, therefore, one has two choices. ZEither an iterative solution may be
employed, which is essentially the same as a graphical solution, or approximate
expressions may be developed which are accurate enough to sult the need. For
space vehicles, probes, and so forth in flight, the latter choice is the more
attractive because the computing time may be made very short and the number of
computer components required may be reduced. The following set of approximate
equations is developed to fill this need.

Exact Equations for Coast Range

A starting point for developing approximate equations for exit velocity and
flight-path angle as functions of apogee altitude and range are the exact equa-
tions in which velocity and flight-path angle are the independent variables. The
equation for range, as derived from equation (93) on page 63 of reference 3 is:

) 1 % sin 2y
® = 2 tan (21)

2
V. .
CcirTr 2
- cosYy,
(Vb>

where the subscript b denotes conditions existing at exit from the atmosphere
and V.;,. 1s circular satellite velocity at 300,000 feet. The equation for max-

imum altitude is (see appendix)

hy = = - T (22)
where
2
28T,
A =W2 - 28 (23)
b
B = Egere2 (2k)
and
2
Cc = —(rbe cos Tb) (25)

18



Values of Vi, and 7Y, Which satisfy both equations (21) and (22) simulta-
neously are the values which give a particular maximum altitude for a particular

range.
Approximate Equations for Coast Range

By use of the following substitution, equation (21) may be put into a form
which is much easier to manipulate. Let

-

b
1]

Vb cOSs Y‘b (26)

and

N D)
1]

Vp sin 1y (27)

Then, beginning with equation (21),

Vi, sin 1)V COS 717 .
8 =2 tan™+ ( 2 5 b)( b 2> =2 tan'l<———€§£———§> (28)
Voir - (Vb cos Yb) Veir - X
which can be put into the form
) . Al
x= + (z ctn —)x - VCir =0
the x term of which is
. z 0 J 2 z 8 2
- £ e l o
x =-3 ctn 5t Veir (2 ctn 2) (29)

The second term under the radical sign is numerically of magnitude much smaller

than Vcirg) and hence may be neglected. After this second term is dropped, equa-
tion (29) becomes

. Z &
X =Voip - > ctn 5 (30)

Equation (30) is approximately equivalent to equation (28) under almost all
conditions likely to be encountered in practice, end the approximation becomes
invalid only near 6 =0° and © = 360°. Whereas it was not possible to solve
equations (21) and (22) explicitly, it is possible to solve equations (30)
and (22).

19



Rewriting equation (23) gives

. . Dg 1.2
A= x2 ¢ 32 Bele
s
Solving for 2° yields
. . 2g.r.2
22 = A - x2 + EeTe
Ty

But, from equation (22),

(2Ara + 3)2 = B - LAC

where r, = h, + r, 1s the highest or apogee radius.
a(Ary® + Bry + C) = 0
therefore,
B C
A= a2
r 2
a Ty
so that
2 __B _ C__jzo, BT
ra ]:'a2 Ty

Inasmuch as equations (25) and (26) can be combined to form

_ 22,2
C = x Ty

Now,

equation (35) may be substituted in equation (34) so that

20

. 2%2 . oy . 2
2 __B . s2 , “Bele

(31)

(32)

(33)

(34)

(35)

(36)



But, from equation (26),

)
2 _ 2 ; 8 , z= 2(8
Xe = VCiI' - VCiI‘ z ctn 5 + —u-— ctn (5) (37)

Again, dropping the small last term on the right-hand side of equation (37) which
is negligible in relation to Vcirg’ and then substituting equation (37) into

equation (36) yields

+2 B Tp ( 2 . 9> gele
25 = ea— + | —— = 1} Vag -V.:..2 ctn =) + ——— (38)
T, (Ta2 cir cir 5 rp
N
After collection of terms, equation (38) becomes
2 2 2g.T "
.2 T 8| B Tb 2 BelTe™ | _
z= + (——5 - >VCi1' ctn E Z + E‘— - (——2 - >VCiI' - —r——— =0 (59)
T, a T, b
Defining
A =1 (40)
2
T
T b _ 8
B' = Vcir<—7§ >ctn 5 (k1)
ra
and
.2 og.r.°
cr =B [ _1 Vcir2 . ee (42)
r, ra2 Ty
then
2
. -R' * ' - hator
s B JZé ) A'C (43)
2A"

Because a negative z will not permit skipout, the positive sign on the radical
is selected.

It follows immediately once 5 is known that X can be calculated from
equation (30). Hence, from equations (26) and (27)

v, = VE2 o+ 22 (4k)
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and

m, = cost{E) (5)
b

Comparison of Approximate Solutions With Exact Solutions

Solutions to these equations were computed both for the exact equations (15)
and (19) and also for the approximate equations in order to compare the results
of the two methods. Figure 6 is an exact solution to equations (18) and (19)
where the dashed lines are lines of constant apogee and the solid lines are lines
of constant range. The corresponding approximate solutions are shown in figure 7,
to the same scale, for a number of ranges and apogee altitudes.

Figure 8 shows the same information as figure 6; however, in this case, Vi
and 71}, &are broken up into X and Z. The peculiar, fan-like structure of this

curve converging toward V is of interest. In all of the cases shown here,

cir
the reference altitude is taken at 300,000 feet. For higher altitudes, the fan
tends to be closed somewhat towards the 180° line. Figure 9 gives the same infor-
mation for the approximate equations as does figure 8 for the exact. Figure 10

1s a comparison of the approximate-range equation (26) with the exact-range equa-
tion in order to give an idea of the discrepancy between the two. It can be seen
that no significant loss in accuracy results from the use of the approximate
equations.

Inasmuch as atmospheric drag may be neglected above the breakout altitude of
300,000 feet for all practical burposes, the foregoing set of equations
(egs. (30), (43), (44), ana (45)) may be used to predict exit conditions for the
atmospheric portion of the maneuver. Moreover, due to their explicit nature, they
will be able to do this more quickly than would be the case with more exact
solutlons.

GULDANCE SCHEME AND SIMULATION

The two sets of approximate equations which have been developed may now be
combined to form a single guidance scheme. Such a guidance scheme would be some-
what as follows.

A range to be sought is decided upon before or during the early skip phase
of the maneuver. This range must, of course, lie within the set of ranges which
are physically realizable.

A unique combination of breakout velocity and flight-path angle which will
achieve this range is determlined from the strictly orbital considerations of the
coast phase. Factors which govern the selection of this combination, for
Instance, are the maximum or minimum allowable altitude after the first skip.
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Figure 6.- Exit veloclity plotted against flight-
path angle showing lines of constant range and
apogee altitude for exact computation.
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Figure 7.- Approximate solutions showing lines of
constant range and apogee altitude.
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constant range and apogee.

At some time during the skip, probably just as the vehicle starts to climb
out, a control computer begins solving the approximate equatlions. This computer
will receive inputs from an inertial guidance system detailing present velocity,
flight-path angle, and altitude. This information is then used along with the
desired final flight-path angle and velocity in equation (14) to select the proper
lift-drag ratio. The procedure is repeated continuously, all terms becoming
increasingly accurate until breskout is reached, at which time the desired final
conditions should be achieved. The vehicle then follows the usual Keplerian orbit

until the second reentry.

The skip-control scheme which is outlined here was programed on a digital
computer in order to check its validity. Some of the preliminary results of this
simulation scheme are 1isted in table II. A block diagram of the simulation is
given in figure 11. The results shown in the table are for a vehicle which has
the 1lift-drag characteristics of figure 12, and which weighs 7,000 pounds and has
a surface area of 60 square feet. A limit to the angle of attack corresponding to
a lift-drag ratio of 0.5 was incorporated. Entry was at 35,000 feet per second
with initial flight-path angles of -5°, -5.5%, and -6° at 300,000 feet, although
other entry conditions have been studied. The atmosphere used in this simulation
1s the ARDC Model Atmosphere, 1959 (ref. 4). The proper apogee altitude after
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the skip for each desired range was
e selected empirically because a good ana-
- i lytic selection technique is not pres-
ently available. Under present circum-
stances, this would have to be read into
the guidance from tables. Interpolation
here is practical since great accuracy
is not required. The results indicate
agreement between the desired and
achieved exit velocities to within
o approximately 4 feet per second, and,
in most cases where the desired velocity
has been achieved, the desired flight-
path angle has also been achieved to
within cne-tenth of a degree. Selected
time histories from this simulation are
shown in figures 13, 14, and 15. In
this simulation, guidance was initiated
at minimum altitude and continued until
S e N . breakout.  Thus, the guidance mode was
Veloclty componen, %, °t/sec in operation during roughly the final
60 seconds before breakout. Ranges

Figure 10.- Comparison of range o})tained by approxi- hetween roughly TOO and EOOO about the

mate and exact equat-ons. center of the earth are easily achieved
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ST Mhs @ for L/D L/D, Vi, Yoo by, a
oy Yhs My
Compute desired ] Convert. from
exit conditions ).(,‘}_ coordinates
trom specified E‘l'_ .. - ta -
Lo . x, 2 N
(fan CUmPUU"rIOH;J ’ V,v coordinates

‘ Print out

X, z, Vy, Ty by

Figure 11l.- Block diagram of simulation.
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TABLE II.- TYPICAL SIMULATION RESULTS

Entry Desired Apogee, Desireq exit Exit Deéired exit | Exit flight-
angle, range, hy, velocity, velocity, | flight-path | path angle,

deg e, £t Vo, Vi angle, 7Yy, Tp»
deg ft/sec £t /sec deg deg
(| 101.50 | 656,000 25,407 25,407 1.96 1.92
132.82 820,000 25,564 25,568 2.05 2.0k
-5 4] 158.52 984,000 25,676 25,676 2.11 2.11
179.68 | 1,148,000 25,764 25,768 2.16 2.16
| 197.22 | 1,312,000 25,843 25,843 2.20 2.21
45,02 k92,000 24,423 24,426 2.63 2.31
71.48 656,000 24,892 24,895 2.94 2.80
-5.5 k.41 820,000 25,151 25,151 3.12 3.04
114,48 984,000 25,328 25,328 3.25 3.21
132,14 1,148,000 25,463 25,463 3.35 3.32
| 1k7.70 [1,312,000 25,571 25,57k 3.43 3.h2
(| 33.32 | 492,000 23,304 23,30k 3.67 2.97
53.9k4 656,000 24,138 2k ,141 4. o4 3.69
. 72.70 820,000 24,584 2k 587 4, 22 L.o1
90.00 984,000 2k 879 24,879 4,34 4,19
105.90 |1,148,000 25,092 25,095 4 41 4,32
| 120.52 |1,312,000 25,263 25,263 b, b7 4 ko

with a slight loss in accuracy in flight-path
angle when shorter ranges are attempted.
ally this loss of accuracy does not represent

any significant loss in range capabllity inasmuch
as the sensitivity of range to flight-path angle
Longer ranges were
not attempted because the higher apogee alti-
tudes involved were not deemed desirable.

is also less in this region.

CONCLUSIONS

Actu-

As a result of the foregoing studies of the
initial reentry and coast portions of a skip
maneuver, the following general conclusions may

be drawn:

1. The approximate guidance equations for
the atmospheric portion of the skip show promise
of providing suitable guidance for a vehicle
during the critical final 60 seconds or so
before breakout from the atmosphere to some
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Figure 15.- Time history of simulation study
with entry flight-path angle of -6°

intermediate range of 90.00°.

and

previously specified breakout velocity
and flight-path angle. The principal
reason for this fact is attributed to
the convergent nature of the equations
as the vehicle approaches breakout alti-
tude which insures that breakout condi-
tions will be achieved precisely and
accurately.

2. The equations governing the
atmospheric portion display the desir-
able property of simplicity and, hence,
require a minimum of computer storage
space. As a result, they may be stored
in a separate memory core and need not
be read into the guidance computer at
all unless actually needed.

3. As a result of the explicit
nature of these equations, they may be
solved rapidly on a digital computer and
may thus be used to govern the control
inputs of the vehicle based on vehicle
conditions at the time of computation.

4, Exit conditions in terms of
velocity and flight-path angle may be
specified uniquely by a desired range
and some corresponding maximua altitude
after the skipout. When the exit con-
ditions are taken to exist at some spec-
ified reference altitude above the dis-
cernible atmosphere, these exit condi-
tions are sultable for specifying the
breakout conditions for the atmospheric
portion of the skip.

5. No significant loss in accuracy
oceurs when the approximate equations
are used in preference to the exact
equations for specifying breakout condi-
tions in terms of range and apogee altl-
tude, whereas, by this means, a simpli-
fication may be achieved in the compu-
tational procedure which results in a
corresponding reduction in the computer
requirements.

6. The preliminary results of a

digital-computer simulation of the
guidance scheme suggested in this paper
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indicate that 1t does work for a variety of desired ranges, achieving the desired
exit velocity within 4 feet per second and the desired exit flight-path angle
within one-tenth of a degree of those values which are specified for the coast
phase. Entries at 35,000 feet per second with flight-path angles between -5° and
-6° at 300,000 feet may be guided with good accuracy to ranges between T0° and
200° about the center of the earth.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 24, 1963.
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APPENDIX
DERIVATION OF THE EQUATION FOR MAXIMUM ALTITUDE

The equation for maximum altitude (eq. (19) of text) may be obtained from the
conservation of momentum and energy. The following equation is given for the
conservation of momentum:

r Vy cos Yy = TgVg (A1)

where the subscript a refers to apogee conditions. Inasmuch as rgy = hg + Tg,

2

solving for V, yields

2
v 2 _ T, Vp COS Ty (A2)
a re + ha

From the equation for the conservation of energy,

2gere2 -V 2 2gere2

2
v2 .- ee - (A3)
a b
Ta Tp
or, transposing and substituting for r,,
2g.r.2 2g.r.°
Va2 - Vb2 _ €eTe + €eTe (Au)
rb I‘e + ha
Equating equation (A4) to equation (A2) ylelds
v, 2 2geTe” + 28eTe® _ (rbe cos Yb)a
WS - =
p re * by (e * ha)2
or
2 2gere2 2 2 2
e - = (Te * Ba)” + 28T (Ye * Ba) - (rbe cos yb) =0 (A5)

If the following substitutions are mede (egs. (23), (24), and (25), respectively,
of the text):

2 2gere2
Ty
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= 2
B = 2g.T¢

= -(rbe cos Yb)g

then
B * {B° - khaC
h = -
a op e

It is clear that only the positive root will give physically meaningful results.
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